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Nineteen analytic potential energy functions (PEFs) for aluminum (three pairwise additive ones, six nonpairwise
additive ones with three-body terms, and ten embedded atom-type PEFs) were obtained from the literature.
The PEFs were tested and reparametrized using a diverse training set that includes 20 potential energy curves
and a total of 224 geometries for five aluminum clusterg N = 2, 3, 4, 7, and 13) computed using hybrid
density functional theory, as well as the experimental face-centered cubic cohesive energy and lattice constant.
The best PEFs from the literature have mean unsigned errors (MUES) over the clusters in the data set of
~0.12 eV/atom. The best reparametrized PEFs from the literature have MUEs of 0.06 eV/atom. The data set
is also used to develop, parametrize, and systematically study the effectiveness of several functional forms
designed specifically to model many-body effects in clusters, including bond angle, screening, and coordination
number effects; a total of eighteen new PEFs are proposed and tested. The best potential overall has an MUE
of 0.05 eV/atom, explicitly includes screening and coordination number effects, features linear scaling, and
incorporates the accurate two-body and bulk limits.

I. Introduction Analytic PEFs may be developed and justified in a variety
of ways, but for large systems they are most often validated by
nates or a wave function evolves in time according to Newton'’s comparing t.he results of a S|ml_JIat|on W'th. some set 9f known

(e.g., experimental) results. This method is often indirect, and

or Schrainger's equation of motion. Within the Bofn . . .
Oppenheimer approximatidr?, all of the relevant information it may not be cle_ar whether the success or failure of a PEF IS
' due to the PEF itself, the dynamical method, or uncertainties

for such a calculation is contained in the masses of the atomsin the experimental situation. More importantly, it is desirable
and in the potential energy function (PEF), which describes the P ) P Y,

L . - to develop PEFs that may be used to simulate events that cannot
variation of the ground-state electronic energy as a function of

- : be easily observed in the laboratory or that are not yet well
the nuclear coordinates. The evaluation of the accuracy of a L . . A
. o . - understood, and it is quite possible that there are no experimental
PEF is therefore a prerequisite for interpreting the results of

any dynamical calculation in which it is used. datz; avallqble that. are sensitive to the full domain of the PEF
Numerous methods exist for computing PEFs for metallic that is required to s!mulate suc_h processes. As_econd, more d_|rect
) ; - method for validating PEFs involves comparing the energies
systems and provide varying compromises of accuracy and

computational affordability. For aluminum systems containin and forces predicted by a PEF over a range of geometries
P Y- y 9 representative of the simulation of interest with the results of

Lantum mechanical methods such as hvbrid densit functiona?eledronic structure calculations. It is often difficult to determine
g y y beforehand which configurations will be important for a

theory# (HDFT) with an accurate basis set for small systems . . . . .
h . simulation, and large numbers of expensive calculations using
(<20 atoms), HDFT with effective core potentfai%for systems - ] ; -
high-level electronic structure calculations may be required to

containing up to~100 atoms, and tight-binding methaéeigor . X L .
. sample the important geometries sufficiently. Furthermore, it
larger systems. For still larger systems, such as those used for

. . ; - _Is often not clear if even high-level electronic structure calcula-
studying the mechanical properties of nanostructured materials,,; . - :
. : i . tions are themselves accurate, especially for systems involving
simulations often contain at least 100 structural units of the metals
material, i.e., millions or even billions of atoms. Simulations h ' | of thi . d devel vt
of this size require PEFs that may be evaluated rapidly and , ' "€ 90al of this paper is to test and develop analytic PEFs

inexpensively, such as analytic PEFs. Inexpensive PEFs are alscglc\’/r ar:umlnum _cluslte(rjs usllng thedsecond, ][nore dlrectl approach.
important for simulations of smaller systems when modeling /e have previously developed data set of accurate aluminum

rocesses with long time scales or sampling various initial C!USter energies using the PBEO hybrid density functional
Eonditions tempera?ures pressures, etc ping theory2~14 (HDFT) with the MG3 basis séf16 which was

found to be the most accurate of several HDFT methods tested
* Corresponding author. E-mail: truhlar@umn.edu. for small aluminum clusters. The data set has been augmented
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In a molecular dynamics simulation, a set of atomic coordi-
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We have attempted to include well-tested PEFs that feature Several mean unsigned errors (MUES) were calculated using
various theoretical models and parametrization schemes. Firstthe test set as follows. Lﬁ"k stand for the PBEO/MG3 energy
the collected PEFs are evaluated using the aluminum clusterof geometryi for cluster sizeN, wherei = 1, ...,n, i.e.,ng is
data set along with the experimental face centered cubic (FCC)the number of geometries included in the test set of cluster size
cohesive energy and lattice constant. Next, we evaluate theN,. Similarly, the corresponding energy computed for one of
relative applicability and flexibility of the various functional the analytic PEFs igik_ In each case we take the zero of
forms themselves by reparametrizing the PEFs against theenergy as the energy of the infinitely separated atoms in the
aluminum cluster data set and the experimental cohesive energyground state. Thus, if the absolute energies from the PBEO/
and lattice constant using a microgen&ti€ algorithm. MG3 and analytic PEF calculations ageandg], respectively,
Another goal of the present paper is to systematically study we have
many-body effects in aluminum clusters and test several
functional forms, not previously applied to aluminum, that were EL = e'k — Nke} 2)
designed specifically to model these effects.
The paper is organized as follows. Section Il summarizes the and

PBEO/MG3 aluminum cluster data set as well as the methods
used to evaluate the PEFs and optimize their parameters. Section G.=g — Ng: 3)
Il summarizes the analytic PEFs obtained from the literature
and several additional functional forms that we designed to Wheree} and 91 are atomic energies. The unsigned error for
model many-body effects in metal clusters. Section IV contains each geometry in the data set is
results and discussion, and section V is a summary.

AE = B~ G{ (4)
II. PEF Evaluation and Optimization
The unsigned error in the energy difference of any pair of

The test set is composed of several computed aluminum L2 " . . -
geometriesj andi’, of a single cluster sizdly is

cluster energies as well as the experimental FCC cohesive
energy and lattice constant. In a previous pdpehe PBEO
hybrid density functional theoty14 (HDFT) method with the

MG3 basis sép® was validated for aluminum clusters by and this error measures the accuracy of the shape of the PEF
ing th Its of | HDFT methods with o . :
comparing the Tesutls ol severa methods with more The MUE per atom for each cluster sikk is defined as

accurate calculations for a test set of small cluster energies. The

AAE, = |(E, — E) — (G, — G))| (5)

PBEO/MG3 method was found to be the most accurate of several N e e
HDFT methods tested with an MUE of only 0.01 eV/atom ¢ _} 2 AAE" + 1 AE' (6)
averaged over a data set of small clustérfhe PBEO/MG3 ko N (n, — 1) ; “ONn&

method was then us&dto develop a data set of energies for
190 geometries, including five cluster sizesyAlwhereNg = The average error for the five cluster sizes (i.e., the average of
2,3,4,7,and 13 fok=1, ..., 5, respectively. The datasethas ., k = 1-5) is labelede.. The unsigned error in the bulk
been augm_ented slightly in the present v_vork with 34 additional ghesive energy is given by
Al; calculations for a total of 224 energies.

Also considered in the evaluation of the PEFs are the bulk 1 e e
cohesive energies, for an FCC crystal with two different lattice €~ §(|Eb(am) ~ Bl IE(a) — By) )
constants: the experimental lattice constantwhich equals
4.022 A when finite-temperature and zero-point effects are whereE; is the experimental FCC bulk cohesive energy for
removed® and the lattice constant corresponding to the aluminun?®?! (3.43 eV) and excludes vibrational zero-point
minimum-energy lattice constant of the PEF, which we will contributions as discussed elsewh&r&@he “total” MUE per
denoteay,. The two energies are label&g(a,) andEy(ay), and atome is the weighted average ef and the five values ofy:
their difference provides an indirect measure of the accuracy
of the fitted lattice constars,. The cohesive energy of a cluster 1 >
is the atomization energy of the cluster divided by the number €= N_(Eb + ZNkEk) (8)
of atoms in the cluster. The bulk cohesive eneEgyfor an av k=
arbitrary value ofis approximated by computing the cohesive

energien(a) for two FCC quasispherical clusters (QSCs) with where
N = 55 and 321 and lattice constaatand extrapolating to 1 5
infinite N by assuming a linear dependenceNri’s, i.e., N, =-(1+ ZNK) (9)
6 =
—1/3 —1/3,
Ea) = 55 Qszf(lz) 32];1/3 Qss(?) (1) In eq 8, the five per-atom MUEs for the clustegsare weighted
55 " —321 according to their cluster sizes, thus giving more relative weight

to the Als data points than to the smaller clusters. The
We verified that the linear relationship in eq 1 is a good experimental bulk cohesive energy and lattice constant are
approximation for the analytic PEFs considered here and thatincluded in the data set with a small relative weight to test
extrapolating from the two QSC energies (fosAand Ak,y) whether the analytic PEFs are reasonable for clusters larger than
provides a good estimate (fof > 55) of the value obtained by  Al;3 and to ensure that the newly parametrized models extrapo-
fitting to a larger series of QSC energies with various large late in a reasonable, even if not quantitative, way to the bulk
values ofN. The lattice constand, predicted by the PEF is  limit, but it is not the goal of this paper to develop analytic
obtained by finding the minimum dEp(a) with respect toa. PEFs that predict quantitative values for bulk properties.



8998 J. Phys. Chem. B, Vol. 108, No. 26, 2004 Jasper et al.

A microgenetic algorithd:18was used to optimize a set of of energy is defined such that; = 0 for all of the PEFs
parameters using eq 8 as the unfitness function. Note that toconsidered in the present work.

avoid a relatively expensive calculatiofsy(am) was ap- It is not clear how quickly the sum in eq 10 converges,
proximated during the reparametrization procedure by fitting especially for metals, which have long-range correlations.
Ep(a) with three different values d (1.1ae, a., and 0.9) to a Nevertheless it is a popular approach to truncate eq 10, often at

parabola and setting, equal to the value cd at the minimum only two or a few terms. PEFs that truncate the expansion at
of the parabola. This approximation was used only during the V, are called pairwise additive (PA), and they are well-known
fitting procedure, and whenever errors are tabulated in the to be inadequate for quantitative wctk2® Four pairwise-
present paper, eq 1 is minimized numerically to ob&irand additive PEFs are considered in the present work, three of which
Ep(am)- have been previously parametrized for aluminum.

Using a microgenetic algorithm does not guarantee that the Halicioglu and Pouné (HalP) parametrized a Lennard-Jones
best set of parameters for a particular error function (unfitness PEF for cubic metals by fitting to the crystal properties of
function) is found (because the optimization may converge to aluminum. The PEF may be written in the general form
a local minimum), and often several sets of parameters may be
found that give similar values for the unfitness function but have Uy(Ry) = Al (L)m — (i)” (14)
varying distributions of errors over the data set. Furthermore, / Ry Rys
the microgenetic algorithm may determine a “best” set of o
parameters that no longer has a physically meaningful inter- Whereo = (Wm)¥™ R, Re denotes the minimum-energy bond
pretation. We have, however, attempted a thorough search ofdistance of the two-body interaction, ant> n.
parameter space by optimizing several initial guesses for the The Pettifor-Ward (PetW) potential has the form
parameters for each PEF, and in every case we continued the 072 3
optimization until we found a physically meaningful set of _ —
parameters that gave the smallest value we could obtaia for Ua(Rop) = RaﬁnZlA“ COSkRys + e o 8)
Therefore, the results allow for a discussion of the relative

success of each type of PEF, which is a goal of the presentand it was developed for simple metals and applied to study

paper. structural phase transitiods.The parameters were obtained
i _ using second-order pseudopotential theBr?.
IIl. Potential Energy Functions Hase and co-workers (deSPH) used a Morse curve with a

In this section, nineteen PEFs for aluminum that have been Parametrized range parameter to model aluminum clu¥t@ise
collected from the literature are described and categorized. (NotePEF (which we will call deSPH/M) has the form
that the term PEF is used to indicate a particular functional form
and a particular choice of parametersr.)) We do not present an UZ(ROL/?) - De(eXp[_ZaYaﬁ] -2 exp[—aYaﬂ])
exhaustive review of the available PEFs (see refs 22 and 23 for
recent reviews of PEFs parametrized for a variety of materials
systems, including aluminum), but we have attempted to include _ 2 3
PEFs featuring several different functional forms based on a 8= 8T 3oy T 8oy (17)
variety of different theoretical justifications or empirical strate-
gies. When PEFs are coded from the literature, it is always
possible that a typographical error is present in the published Yo = Ry — Re (18)
work. We hope that we do not misrepresent the accuracy or
inaccuracy of any PEF due to such an error, and we encourageThe deSPH/M PEF was developed to modej BY fitting to
authors to make their PEFs available in online databases suctthe bond distances and frequencies fog Atedicted by a
as POTLIB-onliné* (where all of the PEFs mentioned in this Lennard-Jones/AxilrogTeller analytic PEF (labeled deSPH/
article are available for download as Fortran routines). Several LJAT and included in section I11.D).

PEFs that have not been previously parametrized for aluminum The extended Rydbety®® (ER) functional form is
are also presented and discussed.

ll.A. Pairwise Additive PEFs. In the absence of external ~ Uy(R,5) = —Dg(1 + &Y 5 + aZYmﬂ2 + a3Yaﬂ3) exp—a, Yyp)
foszrts:es, the total energy df interacting atoms may be written (19)

a

(16)

where

and

whereYygs is given in eq 18. This PEF has not previously been
V=V, +V,+ ...+ V, (10) parametrized for aluminum; it is introduced here because it is
flexible enough to provide an accurate representatioxi,of
Parameters for the PA PEFs obtained from the literature are
given in the first numerical column of Table 1; optimized values
in the tables are explained in section IV.B.
I11.B. Functional Forms for Explicit Many-Body Effects.

whereVy is the sum ofN-body interaction energies; i.e/; is
the energy ol infinitely separated atoms,

Vo = ;ﬁUZ(R“ﬂ) (11) One strategy for modeling many-body effects is to modify a
two-body interaction in the presence of nearby atoms, i.e.,
V;= U3(R(xﬂ' Rﬁy' R(xy), etc. (12) V= ZUZ(ROL/f)fZl? (20)
o>p>y &
Ry = IR, — Ryl (13) wheref™? is a many-body function that is a function of all

bond distances in the system involving either aterar atom
andR, denotes the coordinates of atam Note that the zero  f; becausef ;"ﬁB is designed to model many-body effects, it
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TABLE 1: Parameters for the Pairwise-Additive PEFs atomo, and
PEF parameter literature value optimized value vy
172
HalP AeV) 1.569 0.2396 exp v, + =———| if R< 72
R (A) 5941 2.034 (R = p(“ R- yz) Y 27)
m 12.00 8.144 0 if R> v,
n 6.000 5.804
Petw il 3:822 2'7922 i.e., eq 26 counts the number of atoms near atgmweighted
Ao 1.275 0.1641 by their distance from atora using the weighting function in
As 0.03000 57.38 eq 27. The functional form for the coordination number (CN)
aulm —0.4410 15.13 term is
Al 0.8320 30.84
aslm 0.4310 23.90 CN _ 4 _ _
ki/kzp 0.1560 0.7146 =1 d(l Gu/f) (28)
ko/kor 0.6440 0.6642
ka/kop 0.9580 0.1479 where
Kl/kgp 0.7930 1.889
icolkor 0.6980 0.2771 G 1 1 29)
kalkop 0.2780 1.926 o =
kor (A1) 3.504 3.504 14 (%= fo(Ryp)|” 14 (% f(Rp)|”
deSPH/M  De(eV) 0.5608 0.7989 % %
Re (ﬁ) 2.834 3.183
-1 5282 5457 . . .
22%;_\733 8.302390 %.52935 andd, y, andgp are adjustable parameters. It is convenient to
as (A% 5.109 1.749 think of go as a reference coordination number. Equation 29

. always has a value between zero and unity, so that the effect of
equals unity when atoms andf are close to each other and eq 28 is to weaken the—p bond as the number of nearby
are far from all other atoms. As an alternate to eq 20, one may peighbors increases.
write The screening function has not been previously parametrized

for aluminum, and the bond angle and coordination number

— 1 MB
V= ;Uz(Raﬁ) - Z} U Z(Raﬂ)(l - faﬁ ) (21) functions are newly presented in this work. All three functional
o o forms may be implemented using eq 20, where they will be

where U's(Rys) need not be the same &5(Rys). Obviously, Iabelgd S, BA, and CN, resp.ectively, or using the extended (E)
eq 20 is simpler, but eq 21 provides additional flexibility, and fOrm in €q 21, where they will be labeled ES, EBA, and ECN,

both strategies are pursued. respectively.
We consider three functional forms for the many-body _ !ll-C. Embedded-Atom (EA) Methods. Another approach

function; they are designed to model screening, bond-angle, and© developing analytic PEFs that is widely applied to bulk
coordination number effects, respectively. The screening func- SYSIEMS incorporates many-body effects by considering the

tion, developed by Ho and co-worké¥s3? has the form energy required to place an irr_lpurity (an atorr_1) into a lattice.
In this approach the energetic effects of this placement are
S, =1— tanhg>,) (22) represented by an embedding functiéy which is a function
o6 b of the local electron density. PEFs based on this approach have
where the general form
Xap =K1 > explky(R,, + Ry IR (23) V= ;UZ(Raﬁ) +>F, (30)
yZa,L o> o

Next, we consider two new many-body functions developed where U, is an effective two-body interaction, arfé, is an

specifically for the present work. First is a bond angle (BA) energy functional that, in general, depends on the local electron

function capable of modeling three- and four-body effects: density at aton. and therefore on the geometry of the system.
Several applications of eq 30 have appeared which vary in their

fos =1 — tanhg2y) (24) derivations and prescriptions fdy, and F,. Very often the
embedding functioffr is written as the square root of a density-
XOBL? =K z z exp[—/cz(F{fy + F{g%)] (25) like quantity such as a sum of exponentials. We re_fer to PEFs
y=apo=ap based on eq 30 as embedded-atom-type, or for simplicity, as

h . d bond e f , loselv related dembedded atom (EA) methods, and this category includes the
The screening and bond-angle functions are closely related, an ‘glue”,*142Finnis—Sinclair®® second-moment approximation to

both model t_he physical effect of weakening the interaction of tight binding?445 Sutton-Chen? and several other relat&d*?

two atpmsf n Fhe presence of other atrc])ms. NOte that the ethods. Nine EA PEFs that have been previously parametrized

screening function in eq 22 depends on the bond dist&ge ¢4 aluminum are considered in the present work. In addition,

of the interaction being weakened, whereas the bond angleOne PEF based on effective medium th&8§EMT), which is

func_:tlon in eq 24 o!oes not. o similar to the EA approach, is also included. (Note that for
Finally, we consider the effect of coordination number. The .4 anience the EMT PEF is grouped with the EA PEFs.)

effective coordination number of atomis defined as The Gollisch! (Gol) PEF was used to study molecuiar

_ cluster, and surface properties and uses an exponential embed-
Yo = Z fo(Ruwr) (26) ding function. It has

aFa

whereg, depends on all of the internuclear distances involving UZ(Raﬁ) =A EXP(_GROL/;) (31)
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and 5

Pu= ; A(Raﬂ)zo(clflz)a%/&ﬁ)' (39)

Fo= —B(; exp(=bR,4))" (32) - -
¢ 1 R<R,
The parameters for the Gol PEF were determined from the bulk AcoR) ={ (1 —%*1 + 3+ 6X) Ry, <R<R; (40)
properties of aluminum. 0 R= R,
The PEF of Betz and Husinsky (BetH) was used to simulate
collisions of aluminum clusters with a copper surfa¢dhe where
functional form is mathematically identical to eqs 31 and 32
with n = ,. The parameters for the BetH PEF were determined x=R-R)(R.—R) (41)
by fitting to the lattice constant, cohesive energy, bulk modulus, )
and average shear modulus of aluminum. andR, andR; equal 1.75%, and 1.95Ry, respectively. .
Three PEFs based on the second-moment approximation to Stréitz and Mintmire (StrM) developed a PEF for use in
tight binding45 (TB-u,) are included. The TBe functional modeling the oxidation of bulk aluminum, which was fitted to
form is usually applied with experimental data for the FCC crystlThe metal-only part
of the PEF is included in the present work. This PEF uses
U = Aexp[— /R,— 1 33
Z(Raﬁ) p[ p(Raﬂ Re )] ( ) UZ(RU./)') — 2A1 exp[_al(Ra/;’ — Re)/z] —
and Al + a (R — Rl exp[—ay(R,; — R)] (42)
_ . _ 2 and an embedding function equivalent to those given in egs 32
Fo= B(;Qexp[ 20(R /R, — 1)) (34)  ond a4
— - _ 1/2

We note that eqs 33 and 34 are mathematically equivalent to Fo= B(/;lexp[ al(Raﬂ RaD) (43)

egs 31 and 32 witln = Y/,. The Cleri-Rosaté® (CleR) PEF

was applied to point-defect properties, lattice dynamics, and mishin, Farkas, Mehl, and Papaconstantopoulos (MisFMP)

finite temperature behavior of metals and alloys, and its developed and fit a PEFbased on experimental and ab initio
parameters were determirtérom the experimental values of  calculations of the bulk metal. The PEF has

the cohesive energy, lattice parameter, and elastic constants of

aluminum. The Al-only limits of two TBu, PEFs developed — U,(R,5) = [AM(R,4,R;,a) +

by Papaconstantopoulos and co-workers (PapCEP and Pap- Ry — R
KEP)*+55that were developed to model ANi alloys are also AM(R,4Ry,) + As]w(T) (44)
tested. These PEFs were develdyéelby fitting to ab initio

calculations of the bulk structure.

and
The Suttor-Cherf® (SutC) PEF uses
1,
F,=Fo+ 5F,(p, — 1)+ X, (45)
a\m 0 2
U = A5 ] (35) e
f
where
and terms invoIving?;/;n in the embedding function 3
_ — Ayt
a \n\12 Xy = £ qi(pa l) (46)
F,=— — (36) a
a -~ Roﬂ ) R
Po = ; [cexphy(Ry — Ry +
Parameters for the SutC PEF were deternfifieg fitting to - Ry~ R
the crystal structure, cohesive energy, bulk modulus, and elastic , . d
constants of aluminum. expCb(Ryy R4))]1p( h (47

Mei and Davenport (MeiD) developed parameters for alu-
minun®® for a modified embedded atom PEFThe parameters  M(R,4,R &) = exp[-2a(R,; — R)] —
were determined to reproduce the experimental cohesive energy, 2 expl-a(R,, — R)] (48)
lattice constant, vacancy-formation energy, and elastic constants B
at 0 K. The functional form is given by

and
Uy(Ryp) = o1 — d(R,5/Ry — 1)] x 0 forx=0
_ /R — P =1 4 4 (49)
exp[—c(R,s/Ry — D]Aco(Ryp) (37) XL+ xY) forx<0
3 The Jacobsen (Jac) P®Fs based on EMT and may be
F,=—EJ1—(a/b)In pa]pglb-i- l/2¢>O Zsm X written in the form of eq 30, but it less awkward to write it as
= follows:

exp-(Vm— 1)d[L + (Vm— 1)d — vm(dib) In p,]p, ™"

(38) V= ZEc(m) + Eps (50)
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TABLE 2: Parameters for the Embedded Atom PEFs

PEF parameter literature value optimized value PEF parameter literature value optimized value

Gol AeV) 350.4 641.3 MeiD (contd) Cs —47.16 —43.63

B (eV) 10.38 12.22 Cs 36.19 28.12

a(Ay 2.734 2.991 Cs —8.608 —6.751

b (A1) 1.368 1.364 S 12.00 8.658

n 0.6000 0.6626 S 6.000 4.170
BetH A(eV) 1220 2450 S 24.00 27.91

B (eV) 13.25 7.085 StrM A (eV) 0.07502 0.08510

a(A-l 3.004 3.454 A (eV) 0.1595 0.4101

b (A1 1.637 1.326 B (eV) 0.7639 0.6871

n 0.5000 0.5000 a (A 2.018 1.240
Clere A(eV) 0.1221 a (A7) 1.767 2.026

B (eV) 1.316 Re (A) 3.366 2.852

Re (A) 2.864 MisFMP A (eV) 2.652 1.389

p 8.612 A (eV) 0.007672 0.001762

q 2.516 As (eV) 1.030 0.1095
PapCEP  A(eV) 0.05500 Re X&) 6.780 6.117

B (eV) 0.9564 h(A) 1.416 4.788

Re (A) 2.831 a (A 2.090 1.017

p 10.90 a (A1 1.030 1.313

q 1.513 by (A2 1.921 0.5742
PapKEP A(eV) 0.03340 b, (A~ 0.4259 0.2615

B(eV) 0.7981 c 0.05475 0.09980

Re (A) 2.812 R: (A) 1.069 2.340

p 14.61 Rz (A) 6.458 5.139

q 1.112 Rs (A) 2.747 4.411
sutC AeV) 0.03315 0.02304 R4 (A) —6.926 —6.123

B (eV) 0.5436 0.5649 Fo (V) —2.815 —3.139

a(h) 4.050 4.050 F2 (eV) 5.577 4.718

m 7.000 6.853 o (eV) —6.247 —3.625

n 6.000 4.2056 02 (eV) —21.53 —23.15
MeiD ¢o (eV) 0.1318 0.3958 gz (eV) —15.30 —20.11

Ro (R) 2.864 2.625 Jac Eo (eV) —3.280 —3.446

E: (eV) 3.390 3.649 E; (eV) 1.120 2.345

a 4.600 5.194 Es (eV) —0.3500 —0.7848

b 7.100 4.749 no (A-3) 0.04724 0.03536

c 7.348 5.754 7 (A 3.780 2.657

d 7.350 7.664 7 (A7 0.5669 0.7111

Co 0.6409 0.01057 s (A) 1.588 1.879

C —6.838 —7.999 a(evA 189.7 262.2

C, 26.76 31.69 b 1.810 1.566

aThe CleR, PapCEP, and PapKEP PEFs have functional forms that are mathematically equivalent the BetH PEF and were not individually
reparametrized.

where II1.D. Nonpairwise Additive Potentials with Two- and
Three-Body Terms. Numerous other three-body terms have
B n, 2 N, 3 been developed to model various physical effects, and several
Eny) =B + EZ(n_O o 1) + E3(n_0 o 1) (51) PEFs that include such terms are considered in the present work.
We denote PEFs based on eq 10 and truncated;ahs
_ ) nonpairwise additive (NPA) PEFs. Of course, the PEFs of
Eas —an Z(EAS“ EAso) (52) sections 111.B and III.C can also be called nonpairwise, but we
* will use NPA to refer to the PEFs discussed here because they
explicitly add two-body and three-body effects.
(53) Erkogc proposed three PEFs for aluminum that are included
in the present paper. The first two PEFs (which he labeled IV

]W/(n+771)
and V and which we will call ErklV and ErkV) have the

1
Ende = [1—2; expl=775(Rys/bS)]

Endo = [132; expl-n(Ryy/b - son] (54) o R\ R.\n
ia 1 Ua(Ryp) = A[(@) g RuRY (@) S Re)z] (57)
Mo = NoESZ o (55)
U3(Ra5a Rﬁy’ Rmy) =
= +n)lb (56) B(UZ(RQ/f)faﬂy + UZ(Ray)faﬁy + UZ(Rﬁy)fﬁya) (58)

The parameters were determifiedith the help of local density ~ wherefys, is a heuristic three-body term given by

functional calculations. This PEF was used to study the cohesive

properties of metals. Fosy = eXpl-(R,,> + Ry /R (59)
Parameters for the EA PEFs obtained from the literature are

given in Table 2. Parameters for the ErklV PEF2were obtained by fittindJ,
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to diatomic data, and then using the remaining parameteg in

to obtain the correct cohesive energy. The ErkV Bhiffers

from the ErkIV PEF only in the values @& andB, which were

reparametrized using a bulk stability condition.

The Axilrod—Teller (AT) triple-dipole terr* was designed

Jasper et al.

U3(Raﬂ'Rﬁy'Rya) =Dy +¢,Q, + Clez + Cs(Q22 -

Q32) + C4Q13+ C5Q1(Q22 - Q32) + CG(Q33_ 3Q3Q22)] F
(67)

to model long-range dispersion interactions and has been showrfVhere the generalized coordinat€y are defined by the
to be important for the quantitative modeling of rare gases and ransformation

inert condensed phase mate#&®including interactions with
carbon nanotubes. Three PEFs that include the AT term are
considered. Erkodevelope® a PEF called VIII (which we
call ErkVIIl) for FCC systems and parametrized it to experi-

mental bulk quantities:

Al -+l
UyR,) =Al=2| —Al=2 60
R (Raﬂ Rys ©0

UB(Ruﬁ’Rﬁy’Ray) =
BlGaﬂy(foﬂ'RﬁwRay) + BZHaﬂV(Raﬂ'RﬂV’Rw) (61)

where

1+ 3 cosd, cosd, cosy,

Gotﬁy = 3 (62)
(RaﬂRﬁwa)
is the Axilrod—Teller triple-dipole tern$?
Haﬁy -
8 cosy, — 25 cos 3, + 6 cos@, — ¥)(3 + 5 cos D)
RﬂtﬁSROWARﬂV4
(63)

is the next leading term in the triple-dipole expansion, &pd

is thef—a—y bond angle (similarlyys and?, are thea—pf—y
anda—y—p bond angles).

The next two PEFs that are considered have the same
functional form but have different sets of parameters. The PEFs
of Pearson et &° (PeaTHT) and Hase and co-work¥rsleSPH/

Q; \/73 \/73 \/?3 Pagp
&|=lo e 69
R EAEENEEN L

and the damping function is
F = sechg,Q,) (69)

Parameters for the NPA PEFs obtained from the literature are
given in Table 3.

No PEFs based on eq 10 that explicitly include four-body or
higher terms in the expansion were found in the literature for
aluminum, and none are considered in the present work.

IIl.LE. Linear Scaling. The computer cost associated with
evaluating the PEFs discussed in sections Ill.A and III.C scales
as fast ad\? for the PA and EA PEFs, and the cost scaleblas
for the NPA and many-body PEFs in sections Ill.B and IlI.D,
whereN is the number of atoms in the system. Physically, one
expects that any single atom in a large system interacts
significantly only with nearby atoms and that there is some
cutoff distance at which the interaction between two atoms may
be set to zero, i.e., the number of significant interactions scales
asN. This linear scaling may be introduced smoothly into an
analytic PEF using the cutoff function of Stillinger and WeBer
fco, which is given by the formula

AReo \ .
fR<
feolR) = eXp(A TR Rco) TR=Reo (79
0 if R= Rg

where A is a positive adjustable parameter, aRgb is the

LJAT) both use the Lennard-Jones two-body interaction in €q gjsiance at which the cutoff goes exactly to zero. Note this

14 and the Axilrod-Teller three-body term

Us(Ry5:Rs,Ry,) =BGy, (64)

whereGyg, is given in eq 62. The parameters for the PeaTHT
PEF were obtained by fitting to the equilibrium bond lengths

function has an infinite number of continuous derivatives for
all values ofR.
The cutoff function may be applied to two-body terms

US°= U,(R,p)fco(Rup) (71)

of the dimer and trimer and the lattice parameter and cohesiveto three-body terms

energy of bulk aluminum. The deSPH/LJAT PEF parameters

were obtained by fitting to ab initio calculations fory\N =
2—6, 13) clusters.

A PEF was developed by Cox, Johnston, and Muttéfi
(CoxJM) for cubic solids and was parametrized to reproduce
the cohesive energy and bulk lattice spacing. The two-body term

is a Rydberg function of the form
Us(Ryp) = —De(1 + ,0,5) XP(—a50,p) (65)
where

_Ruﬂ_Re
paﬂ_T

and the three-body term has the form

(66)

U5° = Us(RsR;, Ry feo(Ryp) Teo(Rs,) feo(Ry,)  (72)

and to the EA embedding functions; e.g., eq 32 may be rewritten
Fo= —B(; exp(=bR,p)co(Ry)" (73)
=0

When all of the terms are cut off in this way, the computational
cost of the algorithm scales linearly witt for large N.

The cutoff functions in eqs 7073 are incorporated in the
PEFs presented in section IV.C but not in those discussed in
sections IV.A and IV.B.

IV. Results and Discussion

IV.A. Literature PEFs. The MUEs defined in eqs-68 were
evaluated for all nineteen literature PEFs discussed in sections
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TABLE 3: Parameters for the PEFs with Two- and a Lennard-Jones two-body interaction. This significant error is
Three-Body Terms largely due to several geometries in the data set with compressed
PEF parameter literature value  optimized value ~atom—atom distances for which the Lennard-Jones two-body
ErklV A(eV) 6.200 6.117 interaction predicts very high energies, resulting in large errors.
B —1.554 —1.589 Certainly, an accurate representation of these geometries is
Re (A) 2.470 2.410 important, but the error due to these geometries obscures the
a 0.6931 0.6931 evaluation of the PEF for lower energy configurations. There-
Erkva R(eV) iggi 2.396 fore, the_MUE over the cluster data was recomputed excluding
B ~0.6703 geometries for which the smallest distance between any two
R (A) 2.470 atomic centers is less than 1.98 A. (The distance 1.98 A
a 0.6931 corresponds to the bond distance in the accurate PBEO/MG3
n 2.073 Al curve at which the energy of the repulsive wall is equal to
Erkvill A (eV) 1.860 1.491 the energy of the dissociated atoms, i.e., it is the smallest
'é‘i ggy A°) fgzlso 5’;512124 classically alloyved bonpl dis}ance for bouncd AlThis error is
B, (eV ALY 1921 86.90 d_en(_)'_[edEC and is also given in Table 4. The errors are r_educed
R. (A) 2510 2510 significantly for the PEFs with Lennard-Jones two-body interac-
m 11.00 6.904 tions, as well as for some of the other PEFs, when these
n 6.000 4.843 compressed geometries are not considered, but the overall trends
PeaTHT ge(&v)) g'ggg ;i%g remain the same.
n 6.000 4.949 As expected, the PA PEFs are on average the least accurate
m 12.00 5.052 group of PEFs, with an average value qfof 4.0 eV/atom.
B(eV A% 2241 203.4 The HalP PEF reproduces the bulk properties (against which it
deSPH/LIAT A(GR/) 3'600 was parametrized) reasonably well but performs poorly over
rFfe( ) 6‘_8%3 the cluster data set. The PetW PEF was derived entirely from
m 12.00 theoretical considerations and was not fitted to any experimental
B(eV A9 3525 or computed data. The PetW PEF predicts a reasonably accurate
CoxJM De (eV) 0.9073 1.250 lattice constant, but the cohesive energy and cluster energies
R. (A) 2.757 2.617 are qualitatively incorrect. The deSPH/M PEF was parametrized
:z ;'888 ‘;;gé for Alg clusters (which are not represented in our test set) and
G 0.2525 0.1822 is the most accurate of the PA literature PEFs tested ayith
c1 —0.4671 —0.3195 0.43 eV/atom. The deSPH/M PEF is also reasonably accurate
C2 4.4903 9.468 for the bulk data.
23 Ié21197£;L7 _1053%22 The NPA group of PEFs is more accurate than the PA group,
C;‘ ~5 3579 4893 with an average value ef of 2.8 eV/atom. The best NPA PEF
Cs 1.6327 1.200 from the literature is the ErklV PEF, which was parametrized

aThe ErkV PEF has the same functional form as the ErklV PEF to Al data as well as bulk da_ta' Note tha_t due to an er.ror in the
and was not individually reparametrizédThe deSPH/LJAT PEF has ~ bulk data that was used during the original parametrizaion,
the same functional form as the PeaTHT PEF and was not individually the ErklV PEF does not reproduce the bulk data used here. The
reparametrized. ErkV PEF, although improved over the ErklV PEF to include
more bulk properties, does substantially worse for aluminum
clusters.

The functional form for the ErkVIIl, PeaTHT, and deSPH/
LJAT PEFs consists of a Lennard-Jones two-body interaction
and an Axilrod-Teller three-body PEF. The ErkVIll PEF

section II. The calculatedh, values in Table 4 may be compared includes an additional three-body dispersion term. All three PEFs
to the experimental vald&of 4.022 A. (Note that the experi- perform poorly for aluminum clusters, due in part to the presence

mental lattice constant corresponds to a bulk nearest-neighbor®f Compressed atofratom distances in the data set, as discussed
distance of 2.844 A) Most of the literature PEFs were above. However, even when these data are not considered, as

in the &; column, these PEFs do poorly for aluminum clusters.
The PeaTHT and ErkVIll PEFs were parametrized using bulk
data and reproduce the experimental lattice constant reasonably
well but have large MUESs (greater than 4.1 eV/atom) over the

LA —III.C, and the results are presented in Table 4. Also shown
are the average MUE for the cluster data (labelgdi.e., the
average of the errors over the five cluster data setk = 1,

..., D); a “nonclose” cluster average labetgdhat is explained

in the next paragraph; and Ep,, anda,, that are defined in

parametrized for bulk properties, and many of the literature PEFs
perform poorly for aluminum clusters. The average value;of
for all of the literature PEFs is 1.7 eV/atom, and no PEF from

the literature has an MUE for the cluster data that is smaller )
than 0.12 eV/atom. cluster data in the test set. The deSPH/LJAT PEF was

We note that many of the literature PEFs fitted to experi- Parametrized using computed energies for several aluminum
mental data were parametrized using values for the bulk cluster sizes but does not perform well for either the clusters or

cohesive energy and lattice constant determined at 298 K (3.39the bulk data.

eV and 4.050 A, respectively). When the electronic energies The CoxJM PEF has a general three-body functional form,
computed using a PEF are compared to these experimentapnd it performs well for the bulk data (to which it was
quantities, it is necessary to remove finite-temperature and zero-parametrized) but does considerably less well for the cluster
point energy contributions, as discussed in ref 11 for the data, although the error is approximately reduced by half when

cohesive energy and in ref 19 for the lattice constant. geometries with compressed atemtom distances are not
The four PEFs that are the least accurate in reproducing theconsidered.
aluminum cluster energieg(= 3.9 eV/atom) are the HalP, The EA PEFs perform much better as a group than the PA

ErkVIIl, PeaTHT, and deSPH/LJAT PEFs, and they all employ and NPA groups of PEFs, with an average value.a#f 0.42
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TABLE 4: MUEs (eV/atom) and FCC Lattice Constant ay, (A) for the Literature PEFs

PEF type PEF € €3 €4 €7 €13 €c €c €p € am

PA HalP 4.396 16.64 6.641 22.89 0.596 10.23 1.783 0.162 8.449 4.05
PetW 0.707 1.111 1.353 2.045 1.422 1.328 1.085 4.320 1.576 4,12
deSPH/M 0.263 0.456 0.406 0.630 0.415 0.434 0.358 0.098 0.447 4.00

NPA ErklV 0.090 0.150 0.058 0.170 0.119 0.118 0.095 1.332 0.165 4.31
ErkV 0.281 0.476 0.506 0.720 0.751 0.547 0.519 1.361 0.673 3.77
ErkVIll 1.453 5.917 2.735 8.624 0.672 3.880 0.892 1.184 3.396 4.40
PeaTHT 1.578 7.063 2.319 9.638 0.290 4.177 0.554 0.077 3.498 4.02
deSPH/LJAT 2.830 12.00 4.348 16.80 0.382 7.270 1.034 0.807 6.079 4.27
CoxJM 0.712 1.187 1.059 1.854 0.227 1.008 0.478 0.007 0.839 4.00

EA Gol 0.127 0.122 0.073 0.149 0.132 0.121 0.098 0.099 0.126 4.05
BetH 0.311 0.300 0.284 0.196 0.093 0.237 0.210 0.059 0.177 4.03
CleR 0.517 0.636 0.702 0.783 0.251 0.578 0.438 0.940 0.514 3.55
PapCEP 0.137 0.203 0.133 0.340 0.156 0.194 0.136 0.017 0.195 3.96
PapKEP 0.442 0.960 0.605 1.585 0.250 0.768 0.293 0.142 0.689 3.93
SutC 0.565 0.613 0.611 0.470 0.183 0.488 0.426 0.075 0.372 4.04
MeiD 0.552 0.567 0.534 0.380 0.242 0.455 0.439 0.035 0.359 4.05
StrM 0.388 0.438 0.389 0.373 0.098 0.337 0.249 0.023 0.252 4.04
MisFMP 0.313 0.613 0.451 0.872 0.091 0.468 0.194 0.035 0.386 4.00
Jac 0.885 0.701 0.474 0.334 0.427 0.564 0.560 0.161 0.461 3.94

TABLE 5: MUEs (eV/atom) and FCC Lattice Constant a,, (A) for the Reparametrized PEFs

PEF type PEF € €3 €4 €7 €13 €c €c €p € am
PA HalP 0.339 0.588 0.705 0.983 1.158 0.755 0.757 3.132 1.011 3.91
PetwW 0.302 0.354 0.352 0.243 0.208 0.292 0.266 1.700 0.306 3.92
deSPH/M 0.194 0.394 0.356 0.575 0.118 0.327 0.230 2.028 0.353 3.99
NPA ErklVva 0.125 0.242 0.090 0.101 0.058 0.123 0.097 1.020 0.127 4.20
ErkVIII 0.281 0.344 0.242 0.187 0.045 0.220 0.158 2.680 0.238 3.94
LJATP 0.290 0.388 0.255 0.264 0.049 0.249 0.164 3.193 0.282 3.95
CoxJM 0.123 0.132 0.118 0.071 0.031 0.095 0.089 0.157 0.072 4.48
EA Gol 0.086 0.068 0.076 0.062 0.027 0.063 0.058 0.674 0.071 3.86
GEAC 0.187 0.152 0.140 0.085 0.075 0.128 0.119 0.008 0.099 3.93
SutC 0.277 0.268 0.200 0.150 0.122 0.204 0.171 0.161 0.165 4.07
MeiD 0.047 0.063 0.088 0.047 0.028 0.056 0.053 0.001 0.046 4.00
StrM 0.058 0.064 0.084 0.050 0.038 0.059 0.058 0.079 0.052 3.84
MisFMP 0.089 0.079 0.094 0.044 0.032 0.068 0.069 0.000 0.051 4.05
Jac 0.195 0.144 0.092 0.077 0.040 0.110 0.097 0.871 0.104 3.97

aThe ErkV PEF has the same functional form as the ErklV PHEnnard-Jones/Axilrod-Teller functional form. The PeaTHT and deSPH/
LJAT PEFs both use this functional forthThe general EA functional form with exponential embedding function given in egs 31 and 32 with
= 1,. The BetH, CleR, PapCEP, and PapKEP PEFs use this functional form or an equivalent one.

eV/atom. All of the EA PEFs were fitted to bulk properties, the literature have equivalent functional forms, as indicated in
and all but one (CleR) predicts reasonably accurate lattice Tables 2, 3, and 5.

constants and cohesive energies. (The poor performance of the Optimizing the parameters for each PEF results in MUES over
CleR PEF could indicate a typographical error in the published the cluster data in the test set that are up to 97% smaller than
parameters for the CleR PEF; the original authors indicate that those for the original PEFs from the literature, with an average
the CleR PEF predicts these quantities accurately for alumi- improvement of 70%. All three classes of PEFs (PA, NPA, and
num>’) The cluster energies are reproduced with varying EA)improve by roughly the same amount overall, with slightly
accuracy for the various EA PEFs, and the errors are not very better improvement for the NPA group. Due to the intentionally

sensitive to whether geometries with compressed atatom low weight given to the bulk properties, the errors in the bulk
distances are included in the test set. The best EA PEF fromproperties occasionally increase upon reparametrization.
the literature is the Gol PEF witk, = 0.12 eV/atom. As seen from Table 5, the three PA PEFs are the least accurate

None of the analytic PEFs obtained from the literature reparametrized PEFs overall (with> 0.33 eV/atom), clearly
performs accurately enough for aluminum clusters to allow for demonstrating that an effective two-body term is unable to
guantitative work. Furthermore, it is clearly dangerous to employ model clusters of varying sizes with quantitative accuracy.
PEFs for studies outside of their intended range of application. The NPA group is the second most accurate group of

IV.B. Reparametrized Literature PEFs. The nineteen reparametrized PEFs. Note that the PeaTHT and deSPH/LJAT
literature PEFs discussed above were used for a variety of PEFs have identical functional forms, and this functional form
different purposes and parametrized against a variety of differentis labeled LJAT in Table 5. The most accurate reparametrized
data. It is not possible, therefore, to infer the success or failure NPA PEF (and fifth best reparametrized PEF overall) is the
of any particular functional form based on the errors in Table CoxJM PEF withe; = 0.095 eV/atom. The widely used LJIAT
4. To study the relative flexibility of the various functional forms PEF performs poorly for aluminum clusters, and the additional
themselves, the literature PEFs were reparametrized by mini-term in the ErkVIIl PEF provides only a modest improvement
mizing the total MUE ¢ in eq 8) with respect to the available in € (and no improvement ilc) over the LJAT approach.
adjustable parameters. The reoptimized parameters are listed Next we consider the three simplest EA PEFs: the Gol, GEA
in Tables 13, and the MUEs for the reparametrized PEFs are (which labels the common functional form used in the BetH,
given in Table 5. Note that some of the eighteen PEFs from CleR, PapCEP, and PapKEP PEFs), and SutC PEFs. The SutC
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PEF uses an embedding function involving inverse powers of TABLE 6: Percentage of Atoms Havingm = 3, ..., 12

the bond distance, and Table 5 shows that this approach is lesgVearest Neighbors in Several FCC Quasispherical Clusters
accurate than the Gol and GEA approaches that use exponential( @5CS) of SizeN and Approximate Diameter d

based embedding functions. The Gol and GEA PEFs differ only m
in that the Gol PEF allows the exponent in the embedding N dinmp 3 4 5 6 7
function ( in eq 32) to vary, whereas for the GEA PHF=

[ee]

9 10 11 12

1 . ;. - . 13 0.9 0O 0 92 0 0 o O o o s8
/. This additional flexibility results in a 51% smaller cluster 19 11 0 32 0O 063 O O 0O O 5
MUE for the Gol PEF as compared to the GEA PEF. It is 43 1.3 0O 0 5 0 0 14 0 0 28 2
interesting to note that the GEA and Gol PEFs, although very 55 14 0O 0 22 0 44 11 0 O 0 24
similar in their functional forms, have qualitatively different ;g i? 8 8 8 gg ii 8 38 23 8 3‘2‘
distributions of errors over the data set. The Gol PEF does well )
. 135 1.8 0O O O 3 0 18 6 0 9 32
for the cluster energies and poorly for the bulk data, whereas 147 19 0 4 0 34 0 0 23 0 9 30
the situation is reversed for the GEA PEF, demonstratingthe 177 20 0 0 20 0o 0 31 5 0 14 31
ambiguity in finding the “best” set of parameters that minimizes 675 3.0 0O 0 O 7 11 8 14 0 5 55
a particular error function. Clearly, more than one set of 1601 40 0 0 0 6 8 4 10 1 6 63
; “ " ; ; 3367 50 0 0 1 6 5 4 7 3 6 70
parameters that gives a “small” error may be found with varying 5979 60 0 0 O 5 4 4 4 4 4 75
error distributions. 9693 70 0 O O 4 4 2 5 3 4 78
The three best reparametrized PEFs overall are the MeiD, 14363 80 0 O O 3 4 3 4 3 4 81

StrM, and MisFMP PEFs, which have impressively small total  a 1pe giameted is calculated aBmax+ Ru WhereRnaxis the largest
MUEs of only ~0.05 eV/atom. For all three PEFs, the error is interatomic distance in the cluster ami, is the nearest neighbor
fairly evenly distributed over the data in the test set, but the distance for bulk aluminum.

MeiD and StrM PEFs are slightly more accurate for the cluster

data. The StrM PEF uses the same embedding function as the 2
GEA PEF but has a more highly parametrized two-body

interaction. This additional flexibility allows for a total MUE

that is ~50% smaller than that of the GEA PEF. The best 1
reparametrized PEF overall is the MeiD PEF, which performs
well for both the cluster and bulk data.

IV.C. Many-Body Effects. The most accurate reparametrized
PEFs identified in section IV.B (the Gol, MeiD, MisFMP, and
StrM PEFs) could be used with some confidence to model
aluminum clusters. It is not clear, however, how well these PEFs
would perform (i.e., how transferable the reoptimized parameters
would be) for systems similar to but not explicitly represented
in the data set. Therefore, in this section a systematic examina-
tion of the ability of several of the functional forms discussed
above to model many-body effects in general is presented. ) ) . )

. . Figure 1. Accurate and fitted two-body interaction for Alrhe PBEO/

Many-body effects are especially important for clusters and \1G3 data are shown as circles; the fitted data for the ER2 PEF are
nanoparticles. In the bulk metal and in the absence of defects,shown as a thin solid line. The cutoff functidgo used in the ER2
vacancies, and dislocations, every atom has the same numbePEF is shown as a thick solid line.
of neighbors, which, moreover, are distributed uniformly in
space. In clusters, however, atoms experience a greater varietyand goes to zero only when the magnitude of the PEF is
of exposure to the surface, and hence a larger fraction of thesenegligible. This approach requires that convergence with respect
atoms have coordination numbers lower than in the bulk. Table to the cutoff distance must be demonstrated.

6 shows the coordination number distribution of the atoms in  To avoid this future complication, the cutoff function is built
several quasispherical clusters. For clusters with diamdters into the functional form, and the parameters of the two-body
5 nm, greater than 30% of atoms are surface atoms, and thergerm U, are optimized along with those fao. This approach,

is a significant distribution of coordination numbers. If second-, in general, results in smaller cutoff thresholds, while retaining
third-, etc. nearest neighbors are considered, there is even greatesmooth and accurate functional forms. Specifically, the five
diversity in atomic environments. Furthermore, when modeling parameters itJ, (see eqs 18 and 19) were optimized simulta-
the dynamics of energetic processes such as collisions, combusneously with the range parametgiin the cutoff function in eq
tion, or cluster dynamics, high-energy configurations, which 70. The cutoff distanc&-o was not allowed to vary during
involve large displacements from the bulk lattice sites, may be fitting, and several values d®o were tested from 5.5 to 7.0
important. A. We found thatReo = 6.5 A is the minimum distance at

As a first step toward understanding many-body effects in which the error in the Al datae, was less than 0.015 eV/atom
aluminum clusters, the Aldata in our test set was used to and the potential remained smooth. This PEF (fitted todalta
parametrize the extended Rydberg two-body functional form only) is labeled ER2. The fitted ER2 energy curve fog,Ahe
discussed in section Ill.A, with linear scaling introduced using accurate PBEO/MG3 energies for,Aknd the cutoff function
the cutoff function in eq 70. Cutoff functions are often used inthe ER2 PEF is shown in Figure 1, the MUEs for the
introduced after the functional form has been fitted (such as ER2 PEF are summarized in Table 7, and the parameters for
when the PEF is used during a simulation), and the parametersthe ER2 PEF are in Table 8.
of the cutoff function are chosen such that the magnitude of Note that the isolated Alcurve involves a crossing of the
the cutoff function is close to unity (or exactly unity if a step °I1, andgzg electronic states near the equilibrium distance for
function is used) when the magnitude of the PEF is appreciable both curves, as discussed elsewPfesad as seen in the accurate

feo

R,A
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TABLE 7: MUEs (eV/atom) and FCC Lattice Constant a, (A) for the Many-Body PEFs

PEF € €3 €4 €7 €13 € € €p € am
ER2 0.013 0.138 0.420 0.951 1.322 0.569 0.552 17.022 1.433 2.66
ER 0.239 0.405 0.427 0.319 0.133 0.305 0.292 2.081 0.315 3.95
ER2+-AT 0.013 0.149 0.425 0.617 0.648 0.370 0.310 4,580 0.650 4.14
ER2+EAT 0.013 0.149 0.426 0.612 0.651 0.370 0.311 4.596 0.650 4.13
ER2+-CoxJM 0.013 0.091 0.181 0.246 0.258 0.158 0.148 0.866 0.232 4.44
ER2+GEA 0.013 0.113 0.115 0.092 0.042 0.075 0.060 0.005 0.067 3.98
ER2+-MeiD 0.013 0.079 0.100 0.199 0.027 0.083 0.070 0.276 0.089 4.14
ER2+MisFMP 0.013 0.124 0.188 0.371 0.129 0.165 0.070 0.002 0.181 4.05
ER2+S 0.013 0.075 0.099 0.140 0.067 0.079 0.059 0.028 0.084 3.83
ER2+ES 0.013 0.081 0.108 0.095 0.057 0.071 0.056 0.007 0.071 4.05
ER2+BA 0.013 0.136 0.406 0.859 1.131 0.509 0.492 4.683 0.915 4.15
ER2+EBA 0.013 0.108 0.188 0.092 0.077 0.095 0.089 0.020 0.092 4.15
ER2+-CN 0.013 0.082 0.125 0.250 0.032 0.100 0.060 0.003 0.098 3.97
ER2+ECN 0.013 0.085 0.095 0.077 0.030 0.060 0.054 0.006 0.053 4.04
ER2+EACN 0.013 0.094 0.096 0.091 0.028 0.064 0.055 0.007 0.057 4.04
ER2+SCNm 0.013 0.073 0.102 0.107 0.032 0.066 0.054 0.042 0.062 4.15
ER2+ESCNm 0.013 0.075 0.096 0.072 0.028 0.057 0.054 0.001 0.050 4.06
ER2+SCNa 0.013 0.076 0.102 0.141 0.026 0.072 0.053 0.177 0.072 4.15
ER2+ESCNa 0.013 0.080 0.087 0.063 0.027 0.054 0.048 0.001 0.047 4.04

electronic structure data in Figure 1. We chose not to fit these ER2+CoxJM. Parameters for these many-body PEFs are
data to two curves, but rather to a curve that is smooth for all tabulated in Table 8.
values of the bond distance. The fitted equilibrium bond distance The AT term, paired with the accurate two-body curve,

2.65 A is slightly smaller than the experimental vaRi€ of reduces the average error in the cluster data~t37% (as
2.70 A due to this effect. The dissociation energy was not compared with the ER2 PEF) but does not provide quantitative
allowed to exceed 1.55 eV during the fitting procedure. accuracy. The addition of the next-leading term (as in the EAT

The extended Rydberg functional form provided a good fit PEF) has a negligible effect on the results. The three-body term
to the two-body interactionef = 0.013 eV/atom), and other  of Murrell and co-workers (CoxJM) is highly flexible and
functional forms for the diatomic curve were not pursued. It reduces the error in the cluster data by 72% to 0.16 eV/atom.
can be seen from Table 7 that the ER2 PEF performs poorly Next we consider the general embedded atom function (GEA)
for all but the Al clusters, clearly demonstrating the presence given in eq 32 as well as the more complicated embedding
of many-body effects in our data set. functions of Mei and Davenport (MeiD) shown in egs 38 and

For comparison, the extended Rydberg functional form with 39 and Mishin et al. (MisFMP) shown in eqs487. Note that
a 6.5 A cutoff was parametrized against the entire data set, andthe embedding function contains two-body interactions. We wish
this PEF is labeled ER in Tables 7 and 8, where the errors andto isolate the embedding function’s ability to model many-body
parameters are given. The total MUE for the ER PEF is 0.32 effects, so the two-body part of the embedding function is
eV/atom, which is slightly more accurate than the deSPH/M subtracted from the full embedding function; e.g., the many-
PEF, the most accurate PA PEF discussed in section IV.B. Thebody part of eq 32 is
extended Rydberg functional form, although quite flexible, is
not able to accurately fit the complicated many-body effects Fa- = _B(; exp(-bR,)" + B; [exp(-=bR]"  (74)
present in the data set with an effective two-body interaction. e o

An analytic fit to the accurate two-body interaction allows Cutoff functions were added as in eq 73 with a cutoff distance
for a systematic study of the effectiveness of the various of 6.5 A. The many-body part of the GEA, MeiD, and MisFMP
functional forms discussed in section Ill in modeling many- PEFs were combined with the accurate two-body expression
body effects. First, the ER2 two-body PEF was paired with three ER2, and the many-body and cutoff range parameter were
of the three-body terms from section IIl.D: the AT term in eq optimized, holding the two-body parameters fixed. The MUEs
64, the extended AT (EAT) approach in eq 61, and the general for the optimized ER2GEA, ER2+MeiD, and ER2-MisFMP
three-body term of Murrell (CoxJM) shown in eq 67. Parameters PEFs are given in Table 7, and the optimized parameters are
for the three-body terms were obtained by minimizing the error tabulated in Table 8.
in eq 8 while keeping the parameters for the two-body  The optimized GEA many-body term has an average MUE
interaction fixed at their ER2 values. Cutoff functions were for the cluster data of 0.075 eV/atom with smaller errors for
introduced into the three-body terms, as shown in eq 72, with the larger clusters and the bulk data. The MisFMP and MeiD
a cutoff distance of 6.5 A. The range parametén eq 70 was PEFs, although they have more adjustable parameters, do not
allowed to vary. (Note: The highly flexible three-body term in  perform as well as the simpler GEA form.
the CoxJM functional form gives unphysical oscillations in the Finally, we consider the screening, bond angle, and coordina-
cohesive energy as a function of lattice constant when param-tion number many-body functions introduced in section I11.B
etrized using the present data set and the accurate two-bodyas implemented using eq 20 and the extended formalism in eq
interaction. We therefore truncated eq 67 at terms that are21 and using the ER2 two-body interaction. Linear scaling is
second-order in the bond distances; i, cs, andcs were set introduced using eq 70 with a cutoff distance of 6.5 A.
to zero. The resulting optimized total MUE for the CoxJM PEF Parameters for all of the many-body PEFs are tabulated in Table
did not change significantly, and oscillations in the bulk cohesive 8. [When the extended formalism is used (eq 21), the parameters
energy curve were reduced. We also leave out the dampingfor U’, are denoted with primes in Table 8.] The MUEs for
function in eq 69 due to the inclusion of the cutoff functions.) these PEFs are given in Table 7.

The MUEs for these many-body PEFs are shown in Table 7  Five of the six functional forms designed to model specific
where the PEFs are labeled ERRT, ER2+EAT, and many-body effects (i.e., the S, ES, EBA, CN, and ECN



TABLE 8: Parameters for the Many-Body PEFs

PEF two-body  value many-body value PEF two-body value  many-body value PEF two-body value many-body v
ER2 De (eV) 1.710 none ER2S same as ER2 K1 2.143 ER2-SCNm same as ER2 K1 3.849
Re(A) 2.689 K2 0.4560 K2 0.2425
a (A 2345 K3 2.505 K3 3.781
a(R? 1971 A 0.04400 A 0.6157
a(A % 08773 Reo (A) 6.500 Reo (A) 6.500
A 0.1432 ERZES same as ER2 D'. (eV) 1.710 y1 0.4301
Reo ()  6.500 Re(A) 2.689 72 (A) 6.500
ER De(eV)  1.125 none ai (A 2.345 d 0.7500
Re (A) 3.000 a» (A2 1.971 g 0.8332
a(A ) 3120 az(A% 08773 do 10.50
a(A3) 3101 A’ 0.1432 ER2-ESCNm sameasER2 D' (eV) 1.671
as(A %  1.020 Rco(A) 6.500 Re(A) 2.717
A 0.3969 K1 2.024 a1 (A 2.289
Reo(R)  6.500 K2 0.4447 ay, (A2 2.262
ER2+AT same as ER2 B (eV A9 3537 K3 2.378 az (A3 1.053
A 0.02077 A 0.06659 A 0.2160
Reo (A) 6.500 Reo (A) 6.500 Rco(A) 6.500
ER2+EAT same as ER2 B (eV A% 3414 ER2-BA same as ER2 K1 0.04372 K1 3.772
B,(eV A  30.12 k2 (A=%)  0.02729 K2 0.2540
A 0.01648 K3 0.3345 K3 3.713
Reo (A) 6.500 A 1.792 A 0.6790
Re (A) 2.186 Reo (A) 6.500 Reo (A) 6.500
Co 2.640 ER2-EBA same as ER2 D'. (eV) 0.7662 V1 0.4318
a —0.6412 Re(A) 2.689 72 (R) 6.500
C 1.875 ai (A 1.263 d 0.7939
Cs —2.791 a>(A2 2904 g 0.8290
A 0.8063 as (A9 2.415 Qo 10.97
Reo (A) 6.500 A 0.5924 ERZSCNa same as ER2 K1 2.443
ER2+GEA sameasER2  B(eV) 4.051 Rco (A) 6.500 K2 0.1534
a(A 1.129 k1 2.247 3 4.420
n 0.5586 K2 0.1510 A 0.9535
A 0.2634 K3 0.7052 Reo (A) 6.500
Reo (A) 6.500 A 1.200 y1 0.7254
ER2+MeiD sameasER2 ¢ (eV) 0.1102 Reo (A) 6.500 72(A) 6.499
Ro (A) 2.159 ER2-CN same as ER2 Y1 1.020 d 0.7745
E. (eV) 2.002 72 (R) 3.257 g 0.7994
a 7.063 d 1.000 do 6.484
b 6.583 g 0.7792 ERZESCNa sameasER2  D'c(eV) 1.720
c 6.249 o 6.497 Re(A) 2.697
d 6.391 ER2-ECN same as ER2 D'. (eV) 1.264 ai (A 2.243
Co 0.4070 Re(A) 2.390 ay (A2 2.278
C —6.448 ai (A 1.448 az (A3 1.068
C, 36.12 ay (A2 1.486 A’ 0.1143
Cs —47.85 az (A3 1.757 Rco(R) 6.500
Cs 25.83 A’ 1.086 K1 2.244
Cs —5.500 Rco(R) 6.500 K2 0.1298
St 12.69 71 1.809 K3 4.104
S 6.472 v2 (A) 6.097 A 1.396
S 26.97 d 2.218 Reco (A) 6.500
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functional forms) perform well overall; the sixth, BA, term
performs poorly, but the remaining five terms all have an
average MUE for the cluster data that is less thah10 eV/
atom. The CN term gives the smallest error for the bigger
clusters (which have the largest contribution to their total
energies from coordination effects), whereas the error for the S
term is more evenly distributed. The BA function, which was
Tod designed to be more flexible than the screening function, does
not predict an accurate bulk cohesive energy and is much less
accurate overall than the simpler S function. The extended
version of the S functional form involves six additional
parameters but does not significantly improve the error in the
cluster data. The extended version of the BA functional form,
however, greatly reduces the error. This result may be interpreted
to indicate that the functional form of the S term is physically
motivated, whereas the BA term is not. The extended version
of the CN term shows a modest improvement over the CN term
for the smaller clusters.
We developed and evaluated several PEFs in which the
accurate ER2 two-body term was combined with two or more
© I~ of the many-body effects discussed above. The most accurate
gavr PEF that consisted of the ER2 two-body term in combination
cod with the EA and one other many body term is the EFEACN
PEF, where

— = V=S U,RIS + S FYE (75)
<L o~ 2

3« 3 < a=p e 2; ’

0 © 4

0.7247
6.3202
0.7251
0.7373
6.575

many-body

V2 (A)

two-body  value
Y1

PEF

value

many-body

These errors and parameters for the EFRACN PEF are listed
in Tables 7 and 8, respectively.

It is pleasing that the physically motivated and fairly simple
S and CN functional forms are able to modify the accurate two-
body interaction such that the overall errors are on the order of
the best optimized PEFs discussed in section IV.D and that the
trends in the errors for the cluster data support their physical
interpretation. Therefore, we combine the S and CN approaches
and define two new many-body PEFs. Specifically, the two
terms may be combined multiplicatively as in the SCNm PEF,
where

V= ;Uzﬂﬁ) - ZU'Z(RM)(l —foA— 13

value
same as ER2

two-body

PEF
ER2-EACN

(76)

or additively as in the SCNa PEF, where
V=2 URy) ~ 3 VAR~ fop) —
o>
;U'z(Raﬁ)(l —fop) (77)
o>

value

o>

many-body

Note that both the SCNm and SCNa methods may be imple-
mented with bothU, and U', set equal to the accurate ER2
two-body interaction (these two PEFs are labeled ERZNmM

and ER2-SCNa), or withU, equal to the ER2 two-body
interaction and withJ', allowed to vary during fitting (these
two PEFs are labeled ERZEESCNm and ER2ESCNa). The
MUEs for these four new PEFs are included in Table 7, and
the optimized parameters are in Table 8.

In general, the four PEFs show reduced errors as compared
with the PEFs that include only one or the other of the S or the
CN function. The ERZESCNa PEF is the best overall of the
PEFs featuring an accurate two-body interaction with a total
MUE of 0.047 eV/atom, a MUE for the cluster data of 0.054
eV/atom, and a MUE for the bulk data of 0.001 eV/atom. To
verify the validity of the extrapolation in eq 1, the energies of

value

same as ER2

two-body

PEF
ER2+MisFMP

TABLE 8: (Continued)
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27 QSCs from Az to Alspz were computed using the  The AT term is shown to be inaccurate for aluminum clusters
ER2+ESCNa PEF. The bulk cohesive energy estimated using in this context as well. The screening function of Ho et al. and
eq 1 (3.43 eV) agrees well with the bulk cohesive energies the newly presented coordination number function both perform
computed from a least-squares fit to all 27 data points (3.44 well, and the results indicate that these functions incorporate
eV) and from a least-squares fit including only those clusters the important physical features. The best analytic potential
whose cohesive energies differ from the limiting value by less overall has a MUE over the cluster data of 0.05 eV/atom and
than 50% of the difference between the limiting value and the includes screening and coordination number effects, linear
cohesive energy of A} (3.42 eV). scaling, and accurate two-body and bulk limits. This PEF,

Finally, we tested the effect of allowing the two-body term labeled ERZ-ESCNa, would be very efficient for dynamics
to vary in addition to the three-body terms for all of the PEFs simulations of Al clusters, nanoparticles, and solids.
in Table 7. This strategy resulted in slightly smaller overall . .
errors for some of the PEFs. The “best” PEFs had errors Acknowledgment. This work was supported in part by the
comparable to or slightly larger than those for the EHESCNa Defense-University Research Initiative in Nanotechnology
PEF, and so we do not consider this approach any further. ~ (DURINT) through a grant managed by the Army Research
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